Calculus I
 Lecture 14

Feb 19-8:47 AM

Class QE 7
Find slope of the tan, line to the graph
of $f(x)=\sqrt{x}$ at $x=9$.

$$
\begin{aligned}
& \text { of } f(x)=\sqrt{(9, f(a))=(9,3)} \begin{aligned}
& x \rightarrow 9 \\
&=\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9} \\
&=\lim _{x \rightarrow 9} \frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{f(x)-f(9)}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{1}{\sqrt{x}+3}=\frac{1}{6} \\
& \text { Eqn of tan. line } \quad y-f(a)=m_{m}(x-a) \\
& \text { at } x=a \\
& y-3=\frac{1}{6}(x-9) \rightarrow y=\frac{1}{6} x-\frac{9}{6}+3 \quad y=\frac{1}{6} x+\frac{3}{2}
\end{aligned} .
\end{aligned}
$$

find slope of the normal line to the graph of $f(x)=\sin x$ at $x=\frac{\pi}{3}$. tan. line $m_{1} \cdot m_{2}=-1 \Rightarrow m_{2}=\frac{-1}{m_{1}}$ Slope of normal line $=\frac{-1}{\text { sloge of tan, line }}$ $\begin{aligned} & \Rightarrow f(x)=\sin x \\ & \left(\frac{\pi}{3}, f\left(\frac{\pi}{3}\right)\right)=\left(\frac{\pi}{3}, \sin \frac{\pi}{3}\right)=\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right) \\ & m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{\underbrace{2}_{h=x-a}}=\lim _{x \rightarrow \frac{\pi}{3}} \frac{\sin x-\sin \frac{\pi}{3}}{x-\frac{\pi}{3}} \end{aligned}$

Feb 28-8:54 AM

$$
\begin{aligned}
& \text { Let } \quad h=x-\frac{\pi}{3} \text { as } x \rightarrow \frac{\pi}{3}, h \rightarrow 0 \\
& x=h+\frac{\pi}{3} \\
& \lim _{x \rightarrow \frac{\pi}{3}} \frac{\sin x-\sin \frac{\pi}{3}}{x-\frac{\pi}{3}}=\lim _{h \rightarrow 0} \frac{\sin \left(h+\frac{\pi}{3}\right)-\sin \frac{\pi}{3}}{h} \\
& \begin{array}{l}
=\lim _{h \rightarrow 0} \frac{\sinh \cos \frac{\pi}{3}+\cosh \sin \frac{\pi}{3}-\sin \frac{\pi}{3}}{h} \\
=\lim _{h \rightarrow 0}\left[\frac{\sinh \cos \frac{\pi}{3}}{h}+\frac{\sin \frac{\pi}{3}[\cos h-1]}{h}\right]
\end{array} \\
& =\lim _{h \rightarrow 0} \frac{\sinh \cos \frac{\pi}{3}}{h}+\lim _{h \rightarrow 0} \frac{\sin \frac{\pi}{3}[\cosh -1]}{h} \\
& =\cos \frac{\pi}{3} \cdot \lim _{h \rightarrow 0} \frac{\sin h}{h}+\sin \frac{\pi}{3} \cdot \lim _{h \rightarrow 0} \frac{\cos h-1}{h} \\
& \begin{array}{l}
=\cos \frac{\pi}{3} \cdot 1+\sin \frac{\pi}{3} \cdot 0=\cos \frac{\pi}{3}=\frac{1}{2} \\
\text { of normal }=\frac{-1}{1 / 2}=-2 \quad \begin{array}{l}
\text { slope of } \\
\text { tan. line } \\
\text { at } x=\pi / 3
\end{array}
\end{array}
\end{aligned}
$$

Consider the right-triangle below

$$
\begin{gathered}
\sin h=\frac{\text { opposite }}{\text { hyp } P}=\frac{\text { opposite }}{1} \\
\sinh =\text { opposite }
\end{gathered}
$$

cosh

Feb 28-9:12 AM

Feb 27-8:55 AM

Find slope of the tan. line to the graph of

$$
\begin{aligned}
& f(x)=\sqrt[3]{x} \text { at } x=8 . \\
& x \rightarrow f(x)=\sqrt[3]{x} \quad f(8)=\sqrt[3]{8}=2 \\
& \alpha^{\prime}(8,2) \quad \lim _{x \rightarrow a} \frac{\left.f(x)-\frac{1}{12}-5\right)}{x-a}=\lim _{x \rightarrow 8} \frac{\sqrt[3]{x}-2}{x-8} \cdot \frac{\sqrt[3]{x^{2}}+\sqrt[3]{x}+4}{\sqrt[3]{x^{2}}+2 \sqrt[3]{x}+4}
\end{aligned}
$$

Factor $x-8$

$$
\begin{aligned}
& \text { Factor } x-8 \\
& x-8=(\sqrt[3]{x})^{3}-2^{3}=(\sqrt[3]{x}-2)\left(\sqrt[3]{x^{2}}+2 \sqrt[3]{x}+4\right)
\end{aligned}
$$

Recall

$$
A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right)
$$

$$
\begin{aligned}
m= & \lim _{x \rightarrow 8} \frac{\sqrt[3]{x}-2}{x-8}=\lim _{x \rightarrow 8} \frac{\sqrt[3]{x}-2}{\sqrt[{(3 \sqrt{x}-2)\left(\sqrt[3]{\left.x^{2}+2 \sqrt[3]{x}+4\right)}\right.}]{\sqrt[1]{2}}} \\
& =\lim _{x \rightarrow 8} \frac{1}{\sqrt[3]{x^{2}}+2 \sqrt[3]{x}+4}=\frac{1}{\sqrt[3]{8^{2}}+2 \sqrt[3]{8}+4} \\
& =\frac{1}{4+4+4}=\frac{1}{12}
\end{aligned}
$$

find k Such that To be cont. at $x=a$

$$
f(x)=\left\{\begin{array}{lll}
\frac{x^{4}-16}{x^{2}-4} & \text { if } x \neq 2 \\
k x & \text { if } x=2 & \lim f(x)=f(a) \\
x \rightarrow a
\end{array}\right.
$$

is cont. at $x=2 . \quad \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{4}-16}{x^{2}-4}=\frac{0}{0}$

$$
\begin{aligned}
f(2)=k(2)=2 k & & =\lim _{x \rightarrow 2} \frac{\left(x^{2}+4\right)\left(x^{2}-4\right)}{x^{2}-4} \\
2 k=8 & & =\lim _{x \rightarrow 2}\left(x^{2}+4\right)=8 \\
k=4 & &
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{4}-16}{x^{2}-4} \\
& =\lim _{x \rightarrow 2} \frac{\left(x^{2}+4\right)\left(x^{2}-4\right)}{x^{2}-4} \\
& =\lim _{x \rightarrow 2}\left(x^{2}+4\right)=8
\end{aligned}
$$

Use ε and δ to prove $\lim \left(x^{2}+5\right)=14 \checkmark$ $x \rightarrow 3$
For $\varepsilon>0$, there is a $\delta>0$ such that

$$
\begin{array}{lll}
|f(x)-L|<\varepsilon & \text { whenever } & |x-a|<\delta \\
\left|x^{2}+5-14\right|<\varepsilon & " & |x-3|<\delta \\
\left|x^{2}-9\right|<\varepsilon & & |x-3|<\delta
\end{array}
$$

$$
|x+3||x-3|<\varepsilon \quad \text { " } \quad|x-3|<\delta
$$

C keep

$$
\begin{aligned}
& |x+3|=c k \rightarrow|x-3|<\frac{\varepsilon}{c} \quad \delta=\frac{\varepsilon}{c} \\
& \text { If we let } \delta \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { we let } \delta \leq 1 \\
& |x-3|<1 \\
& -1<x-3<1 \\
& \text { add } 6 \\
& 5<x+3<7
\end{aligned} \quad \begin{aligned}
& |x+3|<7 \\
& \hline=\min \left\{1, \frac{\varepsilon}{7}\right\}
\end{aligned}
$$

